Image Generation with OpenAI-Compatible API
AI Gateway supports image generation using the OpenAI-compatible API for the models listed under the Image Gen filter at the AI Gateway Models page, including multimodal LLMs and image-only models.
Multimodal LLMs like Nano Banana, Nano Banana Pro, and GPT-5 variants can generate images alongside text using the /v1/chat/completions endpoint. Images are returned in the response's images array.
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "google/gemini-3-pro-image",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "I've generated a beautiful sunset image for you.",
"images": [
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 15,
"completion_tokens": 28,
"total_tokens": 43
}
}For streaming requests, images are delivered in delta chunks:
{
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1677652288,
"model": "google/gemini-3-pro-image",
"choices": [
{
"index": 0,
"delta": {
"images": [
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
},
"finish_reason": null
}
]
}Image-only models use the OpenAI Images API (/v1/images/generations) for specialized image creation.
Google's Imagen models provide high-quality image generation with fine-grained control. Multiple models are available including google/imagen-4.0-ultra-generate-001 and google/imagen-4.0-generate-001.
View available Imagen provider options for configuration details.
import OpenAI from 'openai';
import 'dotenv/config';
async function main() {
const openai = new OpenAI({
apiKey: process.env.AI_GATEWAY_API_KEY,
baseURL: 'https://ai-gateway.vercel.sh/v1',
});
const result = await openai.images.generate({
model: 'google/imagen-4.0-ultra-generate-001',
prompt: `A snow leopard prowling through a rocky mountain landscape during a light snowfall`,
n: 2,
});
// Process the generated images
for (const image of result.data) {
if (image.b64_json) {
console.log(
'Generated image (base64):',
image.b64_json.substring(0, 50) + '...',
);
}
}
}
main().catch(console.error);import OpenAI from 'openai';
import 'dotenv/config';
async function main() {
const openai = new OpenAI({
apiKey: process.env.AI_GATEWAY_API_KEY,
baseURL: 'https://ai-gateway.vercel.sh/v1',
});
const result = await openai.images.generate({
model: 'google/imagen-4.0-ultra-generate-001',
prompt: `A cascading waterfall in a lush rainforest with mist rising and exotic birds flying`,
n: 2,
// @ts-expect-error - Provider options are not in OpenAI types
providerOptions: {
googleVertex: {
aspectRatio: '1:1',
safetyFilterLevel: 'block_some',
},
},
});
// Process the generated images
for (const image of result.data) {
if (image.b64_json) {
console.log(
'Generated image (base64):',
image.b64_json.substring(0, 50) + '...',
);
}
}
}
main().catch(console.error);import base64
import json
import os
from datetime import datetime
from dotenv import load_dotenv
from openai import OpenAI
load_dotenv()
def main():
api_key = os.getenv("AI_GATEWAY_API_KEY") or os.getenv("VERCEL_OIDC_TOKEN")
base_url = (
os.getenv("AI_GATEWAY_BASE_OPENAI_COMPAT_URL")
or "https://ai-gateway.vercel.sh/v1"
)
client = OpenAI(
api_key=api_key,
base_url=base_url,
)
result = client.images.generate(
model="google/imagen-4.0-ultra-generate-001",
prompt=(
"A red fox walking through a snowy forest clearing "
"with pine trees in the background"
),
n=2,
response_format="b64_json",
extra_body={
"providerOptions": {
"googleVertex": {
"aspectRatio": "1:1",
"safetyFilterLevel": "block_some",
}
}
},
)
if not result or not result.data or len(result.data) == 0:
raise Exception("No image data received from OpenAI-compatible endpoint")
print(f"Generated {len(result.data)} image(s)")
for i, image in enumerate(result.data):
if hasattr(image, "b64_json") and image.b64_json:
# Decode base64 to get image size
image_bytes = base64.b64decode(image.b64_json)
print(f"Image {i+1}:")
print(f" Size: {len(image_bytes)} bytes")
print(f" Base64 preview: {image.b64_json[:50]}...")
# Save image to file with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"output/output_image_{timestamp}_{i+1}.png"
print(f" Saving image to {output_file}")
with open(output_file, "wb") as f:
f.write(image_bytes)
if hasattr(result, "provider_metadata"):
print("\nProvider metadata:")
print(json.dumps(result.provider_metadata, indent=2))
if __name__ == "__main__":
main()Black Forest Labs' Flux models offer advanced image generation with various capabilities. Multiple models are available including but not limited to:
bfl/flux-2-probfl/flux-2-flexbfl/flux-kontext-maxbfl/flux-kontext-probfl/flux-pro-1.0-fillbfl/flux-pro-1.1
View available Black Forest Labs provider options for configuration details.
import OpenAI from 'openai';
import 'dotenv/config';
async function main() {
const openai = new OpenAI({
apiKey: process.env.AI_GATEWAY_API_KEY,
baseURL: 'https://ai-gateway.vercel.sh/v1',
});
const result = await openai.images.generate({
model: 'bfl/flux-2-pro',
prompt: `Render an echidna swimming across the Mozambique channel at sunset with phosphorescent jellyfish`,
});
// Process the generated images
for (const image of result.data) {
if (image.b64_json) {
console.log(
'Generated image (base64):',
image.b64_json.substring(0, 50) + '...',
);
}
}
}
main().catch(console.error);import OpenAI from 'openai';
import 'dotenv/config';
async function main() {
const openai = new OpenAI({
apiKey: process.env.AI_GATEWAY_API_KEY,
baseURL: 'https://ai-gateway.vercel.sh/v1',
});
const result = await openai.images.generate({
model: 'bfl/flux-2-pro',
prompt: `Draw a gorgeous image of a river made of white owl feathers snaking through a serene winter landscape`,
// @ts-expect-error - Provider options are not in OpenAI types
providerOptions: {
blackForestLabs: {
outputFormat: 'jpeg',
safetyTolerance: 2,
},
},
});
// Process the generated images
for (const image of result.data) {
if (image.b64_json) {
console.log(
'Generated image (base64):',
image.b64_json.substring(0, 50) + '...',
);
}
}
}
main().catch(console.error);import base64
import json
import os
from datetime import datetime
from dotenv import load_dotenv
from openai import OpenAI
load_dotenv()
def main():
api_key = os.getenv("AI_GATEWAY_API_KEY") or os.getenv("VERCEL_OIDC_TOKEN")
base_url = (
os.getenv("AI_GATEWAY_BASE_OPENAI_COMPAT_URL")
or "https://ai-gateway.vercel.sh/v1"
)
client = OpenAI(
api_key=api_key,
base_url=base_url,
)
result = client.images.generate(
model="bfl/flux-2-pro",
prompt=(
"A mystical aurora borealis dancing over a frozen lake "
"with snow-covered mountains reflected in the ice"
),
n=1,
response_format="b64_json",
extra_body={
"providerOptions": {
"blackForestLabs": {
"outputFormat": "jpeg",
"safetyTolerance": 2,
}
}
},
)
if not result or not result.data or len(result.data) == 0:
raise Exception("No image data received from OpenAI-compatible endpoint")
print(f"Generated {len(result.data)} image(s)")
for i, image in enumerate(result.data):
if hasattr(image, "b64_json") and image.b64_json:
# Decode base64 to get image size
image_bytes = base64.b64decode(image.b64_json)
print(f"Image {i+1}:")
print(f" Size: {len(image_bytes)} bytes")
print(f" Base64 preview: {image.b64_json[:50]}...")
# Save image to file with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"output/output_image_{timestamp}_{i+1}.png"
print(f" Saving image to {output_file}")
with open(output_file, "wb") as f:
f.write(image_bytes)
if hasattr(result, "provider_metadata"):
print("\nProvider metadata:")
print(json.dumps(result.provider_metadata, indent=2))
if __name__ == "__main__":
main()You can use the OpenAI Python client to generate images with the AI Gateway:
import base64
import os
from datetime import datetime
from dotenv import load_dotenv
from openai import OpenAI
load_dotenv()
def main():
# Initialize the OpenAI client with AI Gateway
client = OpenAI(
api_key=os.getenv("AI_GATEWAY_API_KEY"),
base_url="https://ai-gateway.vercel.sh/v1",
)
# Generate an image
result = client.images.generate(
model="bfl/flux-2-pro",
prompt="A majestic blue whale breaching the ocean surface at sunset",
n=1,
response_format="b64_json",
)
if not result.data:
raise Exception("No image data received")
print(f"Generated {len(result.data)} image(s)")
# Save images to disk
for i, image in enumerate(result.data):
if image.b64_json:
image_bytes = base64.b64decode(image.b64_json)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"output/image_{timestamp}_{i+1}.png"
with open(output_file, "wb") as f:
f.write(image_bytes)
print(f"Saved image to {output_file}")
if __name__ == "__main__":
main()You can use the OpenAI Images API directly via REST without a client library:
import 'dotenv/config';
async function main() {
const apiKey = process.env.AI_GATEWAY_API_KEY;
const baseURL = 'https://ai-gateway.vercel.sh/v1';
// Send POST request to images/generations endpoint
const response = await fetch(`${baseURL}/images/generations`, {
method: 'POST',
headers: {
Authorization: `Bearer ${apiKey}`,
'Content-Type': 'application/json',
},
body: JSON.stringify({
model: 'bfl/flux-2-pro',
prompt: `A playful dolphin pod jumping through ocean waves at sunrise with seabirds flying overhead`,
providerOptions: {
blackForestLabs: { outputFormat: 'jpeg' },
},
n: 3,
}),
});
if (!response.ok) {
throw new Error(`Image generation failed: ${response.status}`);
}
const json = await response.json();
// Images are returned as base64 strings in json.data
for (const image of json.data) {
if (image.b64_json) {
console.log(
'Generated image (base64):',
image.b64_json.substring(0, 50) + '...',
);
}
}
console.log('Generated', json.data.length, 'image(s)');
}
main().catch(console.error);Was this helpful?